a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)
↳ QTRS
↳ DependencyPairsProof
a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)
C1(a2(c1(c1(y)), x)) -> C1(c1(a2(x, 0)))
C1(a2(c1(c1(y)), x)) -> A2(c1(c1(c1(a2(x, 0)))), y)
C1(a2(c1(c1(y)), x)) -> A2(x, 0)
C1(a2(c1(c1(y)), x)) -> C1(c1(c1(a2(x, 0))))
C1(a2(c1(c1(y)), x)) -> C1(a2(x, 0))
a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
C1(a2(c1(c1(y)), x)) -> C1(c1(a2(x, 0)))
C1(a2(c1(c1(y)), x)) -> A2(c1(c1(c1(a2(x, 0)))), y)
C1(a2(c1(c1(y)), x)) -> A2(x, 0)
C1(a2(c1(c1(y)), x)) -> C1(c1(c1(a2(x, 0))))
C1(a2(c1(c1(y)), x)) -> C1(a2(x, 0))
a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
C1(a2(c1(c1(y)), x)) -> C1(c1(a2(x, 0)))
C1(a2(c1(c1(y)), x)) -> C1(c1(c1(a2(x, 0))))
C1(a2(c1(c1(y)), x)) -> C1(a2(x, 0))
a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C1(a2(c1(c1(y)), x)) -> C1(c1(a2(x, 0)))
C1(a2(c1(c1(y)), x)) -> C1(a2(x, 0))
Used ordering: Polynomial Order [17,21] with Interpretation:
C1(a2(c1(c1(y)), x)) -> C1(c1(c1(a2(x, 0))))
POL( C1(x1) ) = max{0, x1 - 1}
POL( a2(x1, x2) ) = x1 + x2
POL( c1(x1) ) = x1 + 1
POL( 0 ) = 0
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)
a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
C1(a2(c1(c1(y)), x)) -> C1(c1(c1(a2(x, 0))))
a2(a2(y, 0), 0) -> y
c1(c1(y)) -> y
c1(a2(c1(c1(y)), x)) -> a2(c1(c1(c1(a2(x, 0)))), y)